skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Fengwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Speculative-execution attacks, such as SgxSpectre, Foreshadow, and MDS attacks, leverage recently disclosed CPU hardware vulnerabilities and micro-architectural side channels to breach the confidentiality and integrity of Intel Software Guard eXtensions (SGX). Unlike traditional micro-architectural side-channel attacks, speculative-execution attacks extract any data in the enclave memory, which makes them very challenging to defeat purely from the software. However, to date, Intel has not completely mitigated the threats of speculative-execution attacks from the hardware. Hence, future attack variants may emerge. This paper proposes a software-based solution to speculative-execution attacks, even with the strong assumption that confidentiality of enclave memory is compromised. Our solution extends an existing work called HyperRace, which is a compiler-assisted tool for detecting Hyper-Threading based side-channel attacks against SGX enclaves, to thwart speculative-execution attacks from within SGX enclaves. It requires supports from the untrusted operating system, e.g., for temporarily disabling interrupts, but verifies the OS's behaviors. Additional microcode upgrades are required from Intel to secure the attestation flow. 
    more » « less
  2. Processors nowadays are consistently equipped with debugging features to facilitate the program analysis. Specifically, the ARM debugging architecture involves a series of CoreSight components and debug registers to aid the system debugging, and a group of debug authentication signals are designed to restrict the usage of these components and registers. Meantime, the security of the debugging features is under-examined since it normally requires physical access to use these features in the traditional debugging model. However, ARM introduces a new debugging model that requires no physical access since ARMv7, which exacerbates our concern on the security of the debugging features. In this paper, we perform a comprehensive security analysis of the ARM debugging features, and summarize the security and vulnerability implications. To understand the impact of the implications, we also investigate a series of ARM-based platforms in different product domains (i.e., development boards, IoT devices, cloud servers, and mobile devices). We consider the analysis and investigation expose a new attacking surface that universally exists in ARM-based platforms. To verify our concern, we further craft NAILGUN attack, which obtains sensitive information (e.g., AES encryption key and fingerprint image) and achieves arbitrary payload execution in a high-privilege mode from a low-privilege mode via misusing the debugging features. This attack does not rely on software bugs, and our experiments show that almost all the platforms we investigated are vulnerable to the attack. The potential mitigations are discussed from different perspectives in the ARM ecosystem. 
    more » « less
  3. Hardware-assisted trusted execution environments are secure isolation technologies that have been engineered to serve as efficient defense mechanisms to provide a security boundary at the system level. Hardware vendors have introduced a variety of hardware-assisted trusted execution environments including ARM TrustZone, Intel Management Engine, and AMD Platform Security Processor. Recently, Intel Software Guard eXtensions (SGX) and AMD Memory Encryption Technology have been introduced. To the best of our knowledge, this paper presents the first comparison study between Intel SGX and AMD Memory Encryption Technology in terms of functionality, use scenarios, security, and performance implications. We summarize the pros and cons of these two approaches in comparison to each other. 
    more » « less
  4. The scale of Android applications in the market is growing rapidly. To efficiently detect the malicious behavior in these applications, an array of static analysis tools are proposed. However, static analysis tools suffer from code hiding techniques like packing, dynamic loading, self modifying, and reflection. In this paper, we thus present DexLego a novel system that performs a reassembleable bytecode extraction for aiding static analysis tools to reveal the malicious behavior of Android applications. DexLego leverages just-in-time collection to extract data and bytecode from an application at runtime, and reassembles them to a new Dalvik Executable (DEX) file offline. The experiments on DroidBench and real-world applications show that DexLego correctly reconstructs the behavior of an application in the reassembled DEX file, and significantly improves analysis result of the existing static analysis systems. 
    more » « less
  5. The scale of Android applications in the market is growing rapidly. To efficiently detect the malicious behavior in these applications, an array of static analysis tools are proposed. However, static analysis tools suffer from code hiding techniques like packing, dynamic loading, self modifying, and reflection. In this paper, we thus present DexLego a novel system that performs a reassembleable bytecode extraction for aiding static analysis tools to reveal the malicious behavior of Android applications. DexLego leverages just-in-time collection to extract data and bytecode from an application at runtime, and reassembles them to a new Dalvik Executable (DEX) file offline. The experiments on DroidBench and real-world applications show that DexLego correctly reconstructs the behavior of an application in the reassembled DEX file, and significantly improves analysis result of the existing static analysis systems. 
    more » « less
  6. The recent edge computing infrastructure introduces a new computing model that works as a complement of the traditional cloud computing. The edge nodes in the infrastructure reduce the network latency of the cloud computing model and increase data privacy by offloading the sensitive computation from the cloud to the edge. Recent research focuses on the applications and performance of the edge computing, but less attention is paid to the security of this new computing paradigm. Inspired by the recent move of hardware vendors that introducing hardware-assisted Trusted Execution Environment (TEE), we believe applying these TEEs on the edge nodes would be a natural choice to secure the computation and sensitive data on these nodes. In this paper, we investigate the typical hardware-assisted TEEs and evaluate the performance of these TEEs to help analyze the feasibility of deploying them on the edge platforms. Our experiments show that the performance overhead introduced by the TEEs is low, which indicates that integrating these TEEs into the edge nodes can efficiently mitigate security loopholes with a low performance overhead. 
    more » « less
  7. The recent edge computing infrastructure introduces a new computing model that works as a complement of the traditional cloud computing. The edge nodes in the infrastructure reduce the network latency of the cloud computing model and increase data privacy by offloading the sensitive computation from the cloud to the edge. Recent research focuses on the applications and performance of the edge computing, but less attention is paid to the security of this new computing paradigm. Inspired by the recent move of hardware vendors that introducing hardware-assisted Trusted Execution Environment (TEE), we believe applying these TEEs on the edge nodes would be a natural choice to secure the computation and sensitive data on these nodes. In this paper, we investigate the typical hardware-assisted TEEs and evaluate the performance of these TEEs to help analyze the feasibility of deploying them on the edge platforms. Our experiments show that the performance overhead introduced by the TEEs is low, which indicates that integrating these TEEs into the edge nodes can efficiently mitigate security loopholes with a low performance overhead. 
    more » « less